Formal Completions and Idempotent Completions of Triangulated Categories of Singularities
نویسنده
چکیده
The main goal of this paper is to prove that the idempotent completions of the triangulated categories of singularities of two schemes are equivalent if the formal completions of these schemes along singularities are isomorphic. We also discuss Thomason theorem on dense subcategories and a relation to the negative K-theory.
منابع مشابه
Rings of Singularities
This paper is a slightly revised version of an introduction into singularity theory corresponding to a series of lectures given at the ``Advanced School and Conference on homological and geometrical methods in representation theory'' at the International Centre for Theoretical Physics (ICTP), Miramare - Trieste, Italy, 11-29 January 2010. We show how to associate to a triple of posit...
متن کاملTowards Concept Analysis in Categories: Limit Inferior as Algebra, Limit Superior as Coalgebra
While computer programs and logical theories begin by declaring the concepts of interest, be it as data types or as predicates, network computation does not allow such global declarations, and requires concept mining and concept analysis to extract shared semantics for different network nodes. Powerful semantic analysis systems have been the drivers of nearly all paradigm shifts on the web. In ...
متن کاملExact completions and toposes
Toposes and quasi-toposes have been shown to be useful in mathematics, logic and computer science. Because of this, it is important to understand the different ways in which they can be constructed. Realizability toposes and presheaf toposes are two important classes of toposes. All of the former and many of the latter arise by adding “good” quotients of equivalence relations to a simple catego...
متن کاملClosure Operators in Exact Completions
In analogy with the relation between closure operators in presheaf toposes and Grothendieck topologies, we identify the structure in a category with finite limits that corresponds to universal closure operators in its regular and exact completions. The study of separated objects in exact completions will then allow us to give conceptual proofs of local cartesian closure of different categories ...
متن کاملA Note on Free Regular and Exact Completions and Their Infinitary Generalizations
Free regular and exact completions of categories with various ranks of weak limits are presented as subcategories of presheaf categories. Their universal properties can then be derived with standard techniques as used in duality theory.
متن کامل